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The spatially developing region of a steady downslope current in transition from a hy-
draulically controlled, arrested wedge flow is examined through a set of laboratory ex-
periments. The mixing and entrainment mechanisms at the shear interface are explored
with the use of imaging techniques. The initial, unstable accelerating region, character-
ized by rapid development, low shear layer Richardson numbers and high entrainment
rates, is limited by the effects of stratification which suppress the large-scale overturn-
ing. A subsequent high Richardson number region is characterized by weak entrain-
ment and the collapse of turbulence from the initial region. The flow approaches a
quasi-stable state as the mixed layer draws energy from the accelerating density cur-
rent. Observed large-scale structure is attributed to an instability of the marginally un-
stable shear layer. Entrainment rates are calculated within each region for the various
slopes considered and estimates for the extent of the transition regions are obtained.

1. Introduction
The flow of a dense fluid along a sloping bottom is a basic geophysical process in

scenarios ranging from deep ocean outflows to downslope mountain winds. Gravity
currents also provide an important mechanism for transfer of sediments. The estab-
lishment of these flows in many cases derives from a region of hydraulic control due
to a geometric constriction, which generates selective acceleration of the stratified
fluid. This acceleration in turn destabilizes the flow to shear instabilities that result in
turbulent mixing and transfer of mass and momentum.

Numerous observational studies exist which document the occurrence of these
downslope flows in the atmosphere and ocean. Lilly (1978) and Nieman et al. (1988)
examined separate downslope windstorms in Colorado. Recent work by Farmer
& Armi (1999) draws analogies between these mountain wind events and their
observations of flow over a sill in Knight Inlet in British Columbia. Baringer & Price
(1997) have explored the development and entrainment of the Mediterranean outflow
at the west end of the Strait of Gibraltar.

From the experimental approach, a significant body of work has been generated
addressing the transient gravity current problem. The steady flow situation, however,
has received less attention following the classic set of experiments by Ellison & Turner
(1959). A notable exception is the recent work by Baines (1998) who examined
downslope flows into a stratified environment. The study by Ellison & Turner,
motivated by the problem of buoyant flow of methane gas along the roof of a mine
shaft, examined the entrainment of a developed stratified current along a slope. They
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found that the entrainment of ambient fluid into the flowing layer was proportional
to the layer velocity and an inverse overall Richardson number (or equivalently, the
layer Froude number) for the layer. The variation of the entrainment with bottom
slope was essentially linear.

Their examination of the theory for inclined plumes showed that for a constant
slope, the flow reaches a constant Richardson number through a balance between
gravity, bottom friction and entrainment, within an estimated distance of 10ho, where
ho is the initial layer depth. As a consequence, the effect of this initial transition
region was justifiably neglected in their experiments. In many flows, however, this
initial adjustment region may contribute a significant portion of the local mixing,
as is suggested by the vigorous mechanisms evidenced in Pawlak & Armi (1998).
Additionally, variations in bottom slope or channel width create regions of local
hydraulic readjustment which will alter the flow balance and entrainment mechanisms.
Baringer & Price (1997) reported increased entrainment in regions of increased slope
in the Mediterranean outflow.

The turbulent structure in inclined plumes has remained largely unexplored, al-
though Ellison & Turner described ‘irregularities or turbulent eddies’ in the downs-
lope flow. Observations of periodic gusts in downslope windstorms have been widely
reported. Lidar observations by Nieman et al. (1988) of a downslope windstorm
showed evidence of large-scale coherent structure advected by the mean wind. Peltier
& Scinocca (1990) have used numerical simulations of downslope winds to relate
Kelvin–Helmholtz instabilities to these periodic gusts. The nature of the entraining
process and the mechanism for instability in a developed downslope current have not
been examined, however.

In an earlier paper (Pawlak & Armi 1998) we examined the initial stages of
development in the accelerating, stratified shear layer which occurs within the arrested
wedge flow. A new type of vortex mechanism was observed which was shown to be
a result of the spatial acceleration of the flow, coupled with the effects of buoyancy
on the inclined mixing layer.

The general goal of the present study is to understand, qualitatitively and quanti-
tatively, the small-scale mixing processes at work in oceanic settings such as Knight
Inlet and the Strait of Gibraltar, as well as atmospheric flows over topography. In
addition, we will use the developing downslope current to examine the characteristics
of stratified turbulence.

The hydraulic flow of two homogeneous layers of differing densities through
variations in geometry is described in general in Armi (1986). Wedge flows are a
special case of two-layer exchange flows, occurring when the net barotropic flow
through the channel exceeds a critical value, such that only one layer can flow. These
are discussed for flow over a sill in Farmer & Armi (1986). The flow is critical to
long internal waves at the sill crest (intermediate barotropic flow) or at the tip of
the wedge (strong barotropic flow). Arrested wedges in a channel with a contraction
were considered in Pawlak & Armi (1997) including the effects of friction and cross-
stream non-uniformity. The experiments we will present fall within the intermediate
barotropic flow regime, with a flowing lower layer, for which the tip of the wedge
reaches upstream of the sill crest. The upstream (relative to the direction of net
barotropic flow) portion of the wedge is subcritical to long internal waves and the
flow transitions to supercritical conditions downstream, passing through a hydraulic
control at the sill crest. The flowing layer continues to accelerate downstream in
response to the increase in depth.

A complication of the earlier study was the width variation in the channel which
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Figure 1. Sketch of hydraulic flow in transition to a downslope current.

introduced cross-stream vortex stretching into the shear flow. One of the intentions of
the current experiments was to examine the initial developing region in a parallel wall
channel. A further goal was to examine the fully developed region of the mixing layer
in the hydraulically controlled, arrested wedge flow and to explore the transition of
the hydraulic flow to a downslope current. In this paper then, we shall investigate the
effects of acceleration and buoyancy on the structure and development of the mixing
layer and, in turn, examine how these effects modify the entrainment and mixing of
fluid from either layer. Furthermore, we shall consider the plunging, accelerating mean
flow from the perspective of a developing downslope current. For a sufficiently long
incline, the flowing layer will eventually attain an equilibrium state in which a balance
between kinetic energy production and frictional losses is maintained. It is at this stage
that the flow attains a steady Richardson number and constant velocity as shown by
Ellison & Turner. The mixing and entrainment occurring in the development region
is then the key to the establishment of the density gradients that drive the flow.

Several dynamically distinct regions will be identified in the evolution of a downs-
lope current along a constant slope, from a hydraulically controlled flow. Figure 1
illustrates the various regimes of the mean flow of interest. Associated with the hy-
draulic control, involving a transition from subcritical to supercritical flow, is the
initial acceleration of the flowing layer. The subsequent increase in shear destabilizes
the interface to vorticity instabilities. The first important segment in the developing
downslope current is the region of initial instability. The interfacial instability in this
region has not yet reached a scale that is significantly affected by buoyancy so that
entrainment and mixing remain high. Buoyancy becomes a dominant mechanism in
the second region, limiting the scale of instabilities in the mixed layer. The flow
continues to accelerate downstream in hydraulic response to the increasing depth.
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Mixing is reduced relative to the first region, but the input in energy resulting from
the acceleration leads to further development of the mixed layer. The third and final
region downstream is the establishment of the steady downslope flow. A balance
between inertial and frictional forces is attained and mixing continues to be weak due
to the effects of buoyancy.

In this study we shall ignore the influence of the bottom boundary layer on the
mixing at the interface. We note, however, that a rough bottom or an otherwise
separating boundary layer will significantly alter the nature of the turbulent flow and
the entrainment mechanisms at the interface.

In the following section we will describe the experimental facility along with the
diagnostic techniques used. Section 3 presents an overview of the properties of the
mean downslope flow. In § 4 we will focus on one experimental case to examine details
of the structure within the developing downslope current in order to shed light on
entrainment mechanisms. Details of the fluctuating velocity field are considered in § 5
and entrainment rates are presented in § 6.

2. Experimental facility and diagnostics
To examine the more highly developed region of the arrested wedge flow, exper-

iments were conducted in a modified version of the facility described in detail in
Pawlak & Armi (1998). The facility, illustrated in figure 2, consists of a rectangular
Plexiglas channel, approximately 2 m in length, connecting two 800 l reservoirs. The
channel cross-section is 30 cm high and 15 cm wide. A variation in channel cross-
section is introduced using a Plexiglas sill, shown in figure 2(b). The upstream portion
of the sill consists of a 45 cm smoothly varying section extending 5 cm beyond the
crest of the sill. The downstream part of the sill consists of a flat Plexiglas plate
providing a constant slope between the first half of the sill and the channel bottom.
Various slopes were considered by using different length plates attached as shown in
figure 2(b). The experiments discussed herein used plates of 60 cm, 80 cm, 120 cm and
220 cm in length giving slope angles of 14.5◦, 10.8◦, 7.2◦ and 3.9◦, respectively.

The arrested wedge flows are experimentally established as discussed in Pawlak &
Armi (1998). Density variations were obtained using salt, with temperatures monitored
in each tank to ensure isothermal conditions. A sliding gate at one end of the channel
initially separates the two reservoirs. To begin the experiment, the gate is lifted and
a known net barotropic flow is then generated in the channel by pumping dense salt
water from the layered reservoir to the other with calibrated pumps. Open-cell foam
diffusers were placed in each tank as well as in the upstream section of the channel
in order to eliminate velocity fluctuations generated by the pumping.

Since flow velocities for hydraulically controlled flows scale with
√
g′h0, where h0

is the depth at the sill crest and g′ = g∆ρ/ρ is the reduced gravity, the decrease in
depth over the prior experiments meant that the density difference had to increase
to maintain velocities at levels of interest. This factor, combined with the increase in
channel width from 7.5 cm at the narrowest section in Pawlak & Armi (1998) to a
constant-width 15 cm channel, required that the resulting net flow rate necessary to
maintain the arrested wedge flow must also increase. The run time for the facility
scales inversely with the flow rate, so to account for the increase in flow rate, a
third tank was added as a buffer between the downstream and upstream reservoirs.
Water was then pumped from the bottom of the downstream reservoir through a
set of diffusers near the top of the buffer tank, which was connected at the bottom
to the upstream tank by a large (10 cm) diameter duct. This setup also allowed the
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Figure 2. (a) Experimental facility. (b) Channel details showing sill geometry.

downstream tank to be initially filled with a larger quantity of fresh water, preventing
a layer of mixed fluid from intruding upstream into the test section as the experiment
progressed. With these modifications, run times were maintained at about 20 to 25 min
beyond the 5 to 10 min initial transient time.

Imaging techniques were used in diagnosing the flow, including laser induced
fluorescence (LIF) for flow visualization and density field measurements, as well as
digital particle imaging velocimetry (DPIV) for measurement of the velocity and
vorticity fields. The methods used for these are essentially the same as those outlined
in Pawlak & Armi (1998), with the exception of the following improvements to the
DPIV system. The particle field images were obtained using a full frame 480 ×
640 pixel camera allowing increased vertical resolution and accuracy. In addition,
the concentration of rhodamine dye in the lower layer was reduced to increase the
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Figure 3. Experimental velocities. The corresponding bottom slope angle, α, is given for each plot
symbol along with the predictions of hydraulic theory for the flowing layer velocity. Negative values
are upper layer velocities.

contrast with particles, thus eliminating the need for any image processing prior to
the DPIV processing.

A standard, interlaced CCD camera was fitted with a light filter to exclude light at
the laser frequency, allowing measurement of the density field from the fluorescence
of the rhodamine dye. The imaged region for the density measurements was typically
about 18.5 cm by 14 cm. The full frame DPIV camera was focused on a smaller region
of about 16 cm by 12 cm, overlapping that of the first camera, permitting simultaneous
measurement of velocity and density fields.

3. Mean properties
A range of accelerations was considered by varying the downstream slope of

the sill as discussed in § 2. In this section, we will present averaged flow quanti-
ties versus downstream position referenced from the sill crest. These will not be
non-dimensionalized as is customary for shear flows, since there is no single non-
dimensional parameter for downstream distance in a spatially accelerating flow.

Averaged maximum free-stream velocities for the flowing layer, obtained from
DPIV analysis, for the four slopes considered, are summarized in figure 3 as the
positive velocities. Experimental velocities represent averages over time series of 100 s
with typical sampling frequencies of 1.5 Hz. The theoretical curves from the predictions
of hydraulic theory for flow over a sill, including effects of flow non-uniformity
and laminar frictional losses (Pawlak & Armi 1997), are also included in figure 3.
Maximum upper-layer velocities for all slopes considered (negative values) range from
zero near the wedge tip region, increasing in magnitude through the initial unstable
region to about 1 cm s−1 downstream. This weak backflow occurs in the upper layer
due to the effects of viscous diffusion and turbulent entrainment along the interface.
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Figure 4. Vorticity thickness, δv vs. x, symbols are as given in figure 3.
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Figure 5. Density thickness, δρ vs. x, symbols are as given in figure 3.

The evolution of the mixed-layer thickness with downstream distance can be
examined with both the velocity field data and averaged density profiles. The density
field was obtained from 90 s image sequences at a frequency of 3 images per second.
Figures 4 and 5 show the variation of the vorticity thickness, δv , and the density
thickness, δρ, respectively, for all slope angles considered. The vorticity thickness,
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Figure 6. Bulk Richardson number, J vs. x, symbols are as given in figure 3.

δv , was obtained from the inverse slope of the best-fit line through the normalized
velocity profile between the 15% and 85% values,

δv =

(
dv̄

dy

∣∣∣∣v̄(y)=0.85

v̄(y)=0.15

)−1

, (3.1)

where v̄ is the velocity normalized by the local velocity difference. The density
thickness, δρ, was similarly defined using the normalized density profiles. Two distinct
regions of mixed-layer development are identifiable from the data in figures 4 and 5.
An initial region of rapid spreading is evident between x = 0 and 30 cm, followed by
a region of very low growth rate.

The overall Richardson number defined by

J =
g′δv

(∆U)2
(3.2)

plotted in figure 6 for all experimental cases shows a steady increase in the initial
region approaching the stabilizing value of O(0.3) (cf. Koop & Browand 1979;
Corcos & Sherman 1976) and then decreasing slowly downstream. This evolution in
Richardson number is typical for stratified mixing layers, in which the stabilization
results from collapse and restratification. The variation in the maximum Richardson
number evident in figure 6 is probably a result of slight variations in the initial
mixed-layer thickness and its resultant Richardson number. Koop & Browand (1979)
observed similar variations in maximum Richardson number, attributed to a discrete
number of pairings possible in the stratified mixing layer.

In Pawlak & Armi (1998), the effects of acceleration on the initial region of the
developing shear layer were parameterized using an acceleration parameter, defined as

TA =
δ

U

dU

dx
, (3.3)
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in which δ is some measure of the vertical scale of the shear layer and U is the
free-stream velocity of the flowing layer. This parameter, which can be interpreted as
a ratio of an eddy time scale to an acceleration time scale, then varies with down-
stream distance as the flow accelerates and as the mixing layer develops. Previously (in
Pawlak & Armi 1998), TA was defined using only the initial value of the momentum
thickness, for the purpose of examining the initial development of the instabilities.
In figure 7, we show the variation of TA using δ = δv to highlight the variation of
the effects of acceleration with downstream distance as well as its variation over the
experimental cases considered.

4. Flow structure
4.1. High entrainment region

The flow remained stable to interfacial instabilities in the upstream portion of the
wedge. Measurements in this region indicate initial momentum thicknesses between
δθ = 0.2 cm and δθ = 0.5 cm, where δθ is defined as

δθ =
1

∆U

∫ ∞
−∞

(U − u(y))u(y) dy, (4.1)

with Reynolds numbers based on δθ from 80 to 230 for the four cases considered. The
experimental facility provided a steady spatially developing shear interface, on which
Kelvin–Helmholtz (K–H) instabilities appeared at a repeatable and regular interval
between 10 and 20 cm downstream of the sill crest for all the experiments presented,
without the need for any type of forcing.

Visualization of the initial region of instability reveals the prominence of the
vortex dynamics detailed in Pawlak & Armi (1998). A sequence of images from the
developing region is shown in figure 8. Instabilities evolve in an asymmetrical manner
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Figure 8. Image sequence from the developing region. Corresponding vorticity images are shown
to the right of each image. Sequence order is from top to bottom, continued in the second column.

with the developing cores pinching off into the low-momentum stream. The leapfrog
pairing mechanism is prominent, in which a developing K–H billow separates from
the primary density interface and skips over the second vortex in the subharmonic
pair to interact with the third or fourth vortex upstream. The visualizations in these
parallel-wall experiments indicate that the mechanism is, to first order, not affected by
the vortex stretching produced in the variable-width experiments in Pawlak & Armi
(1998).

The primary effect of the vortex dynamics examined by Pawlak & Armi (1998)
is the generation of a strongly asymmetrical density profile. A subsequent selective
entrainment of light fluid into the mixed layer was also evident in their study.

Figure 9 shows a composite of density gradient field images along with a sequence of
velocity and density profiles, u(y) and ρ(y), illustrating the flow evolution for α = 10.8◦.
The bottom slope has been removed and the resulting horizontal coordinate is the
downslope distance. As is evident from the velocity profiles, the bottom boundary
layer thickness remains small relative to the thickness of the flowing layer in the initial
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Figure 9. Evolution of velocity and density profiles superimposed on a composite of density
gradient field images.

region. A significant core of inviscid flow remains and the assumptions of uniform,
hydrostatic flow continue to yield a good prediction of the free-stream velocity (figure
3). As the flow develops further downstream, both the bottom boundary layer and
the interfacial mixed layers become more prominent. The asymetrical development in
the initial region is evident in the density gradient field for x < 30 cm, as discussed in
Pawlak & Armi (1998). This is less evident as the flow progresses downstream.

The relative extent of the initial rapid growth region in the experimental domain
is evident in figure 9. The low Richardson number region plays a limited role in the
development of the steady gravity current. Although entrainment is high in this region,
its growth becomes limited by the effects of stratification over a short distance. For
hydraulically controlled single-layer flows, the velocity in the vicinity of the control
scales as U ∼ √g′H , where H is the height of the reservoir over the sill crest. This
results in a bulk Richardson number for the interface, of Ri = J cos α ∼ δv cos α/H ,
where δv is the vorticity thickness. For a homogeneous turbulent shear layer, with
one flowing layer, the vorticity thickness can be expressed as

δv = δxx+ δv0
, (4.2)

where δx is the linear spreading rate of the mixed layer (cf. Brown & Roshko 1974).
If we assume that δv0

� H and that α is small, then Ri = δxx/H , and it follows that
the shear layer reaches a critical Richardson number, Ric = 1/4 in a distance

∆x1 =
H

4δx
. (4.3)

Koop & Browand (1979) showed that the stratified mixing layer grew as a homo-
geneous shear layer for Ri < 0.32, for which δx = 0.18. The extent of the initial low
Richardson number region is then limited to a length ∆x ∼ O(H). In the experiments
presented here, δv0

is set by viscous and surface tension effects such that the initial
Richardson number is already a significant fraction of one quarter. In geophysical
scenarios such as Knight Inlet (Farmer & Armi 1999), although viscous effects are
negligible, a finite value for δv0

is prescribed instead by the hydraulic flow of the
stratified fluid (Armi & Williams 1993). Since a true two-layer flow is rarely achieved
in geophysical flows and the velocity profile and density profile are inextricably linked
through the hydraulics, the stratified environment plays a similar role to that of the
viscosity in establishing the initial velocity profile. Nonetheless, the ∆x ∼ O(H) scaling
will apply.



56 G. Pawlak and L. Armi

0

0.2

0.4

0.6

0.8

1.0

1.2
12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

x (cm)

α
 (

ra
d 

cm
–1

)

0.5

1.0

1.5

2.0

2.5

3.0

3.5
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4.2. Low-entrainment developing region

As is evident from the data presented in § 3, as well as in the composite image in
figure 9, a significant change in the development of the mixed layer occurs after the
initial rapid growth of interfacial instabilities. In the experiments presented herein, this
occurs beyond about x > 30 cm. The overall Richardson number (figure 6) increases
rapidly to near the stabilizing value of O(0.3) after which the growth in shear layer
thickness appears to be arrested. The collapse and subsequent restratification of the
stratified shear layer is a well-documented process examined by Koop & Browand
(1979) among others. They observed an initial rapid growth through vortex pairing of
the shear layer much like in the unstratified case. As the Richardson number increased
past a critical value as a result of the growth of the mixing layer by vortex pairing,
the pairing mechanism was suppressed, the development of the layer ceased and
production of turbulence in the shear layer died out, with the exception of turbulence
generated by the restratification process.

Although the mixed layer in the transition to a downslope current rapidly reaches
a stabilizing Richardson number (figure 6), visualizations of the interface region
indicate that turbulent mechanisms still persist. Spectral analysis of the density field
image sequences also shows evidence of the development of subharmonic modes well
after the stabilizing Richardson number criterion has been reached. This is shown
in figure 10 in which the downstream evolution of the wavenumber spectra for
α = 10.8◦ was obtained by vertically averaging the spectra of the density time series
at individual pixels. The wavenumber is obtained from the frequency assuming a
convective speed of ∆U/2. Lines of constant frequency illustrate the spatial spreading
due to acceleration. The initial pairing is complete by about x = 24 cm. Lower
frequencies near the second subharmonic become dominant beyond x = 50 cm with
the wavenumber k ≈ 0.15 rad cm−1 of the peak corresponding to a wavelength of
λ ≈ 40 cm!

Structures of this scale were not readily identifiable when examining image se-
quences in this region, since the spatial extent of the individual images was limited
to about 10 cm. This limitation was overcome with a time series constructed from a
vertical cut at a given location in the spatial image. Figure 11 shows a 70 s time series
from x = 53 cm, which clearly reveals large-scale structure. A number of structures of
long temporal extent can be identified. A spatial length scale can be inferred by as-
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Figure 11. Temporal sequence from x = 53 cm, α = 11.8◦.

suming a convective velocity of ∆U/2. Figure 12 shows an expanded view of a portion
of the sequence. The images in figure 12 are scaled such that the aspect ratio reflects
a one-to-one spatial scale using the inferred convective horizontal length scale. The
accompanying vorticity and velocity fluctuations are shown below. The wavelength
of the structures in figures 11 and 12 is approximately 40 cm, indicating that these
correspond to the low-wavenumber peak in the spectral analysis. The image sequence
in figure 12(b) shows individual spatial views at various phases within the large-scale
structure. Small-scale Kelvin–Helmholtz instabilities are visible, developing within the
larger mixed layer, concentrated primarily in the ‘nodes’ of the larger-scale structure.

Additional time series for the density fluctuations, similar to that in figure 11, were
obtained simultaneously from vertical cuts at x = 48.5 cm and x = 62.5 cm. Cross-
correlations were performed between the low-pass-filtered time series for pixels at
equal heights from the bottom. The peaks in each cross-correlation yield convective
velocities versus vertical position for low-frequency structures. These velocities inferred
from the cross-correlations are plotted in figure 13 along with the mean velocity
profiles from the two x-locations. The plot suggests that the flow structure throughout
the depth of the shear layer is essentially advected with the mean velocity.

The solid vertical line represents the velocity obtained from the mean of the cross-
correlations at each pixel, shown in figure 14. The initial peak corresponds to the
passage of an individual structure past the two locations at a time lag of ∆t = 4.0 s.
The peaks at about 15, 25 and 35 s in the plot illustrate the persistence of these
structures, also seen in figure 11, at a period of T ' 10.5 s. A similar analysis with
velocity fluctuations gives identical results. In § 7 we will attribute the low-frequency
structure seen here to a forced instability on the marginally stable accelerating shear
layer.

5. Velocity fluctuations
Velocity fluctuations were examined with the use of time series from PIV measure-

ments. The streamwise r.m.s. velocity fluctuations, u′rms, are plotted versus downstream
position in figure 15, normalized by the mean shear, ∆U. Values remain steady in the
initial, low Richardson number region and decay downstream as the initial turbulence
collapses. The observed rate of decay in the downstream region agrees well with the
slope of x−3/4 noted by Koop & Browand (1979) in the collapsing stratified shear
layer. One might expect a somewhat smaller rate of decay due to the input of energy
from the accelerating layer and, indeed, a lower slope might be observed from the
data; however, the variation in the data is too great to draw any definite conclusions.
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Figure 12. Temporal sequence from x = 53 cm, α = 11.8◦. (a) y, t view of intensity and vorticity
time series. (b) Selected spatial views from points A, B and C in (a). Corresponding vorticity images
are shown at the right.
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Figure 13. Convective velocities from cross-correlations of low-pass-filtered density fluctuations.
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Some sense of the limiting effects of buoyancy on the velocity fluctuations can
be obtained by comparison of the scales of the motions to a relevant density scale.
Figure 16 shows Frms = u′rms/

√
g′δρ versus downstream position. This quantity can

be interpreted as the ratio of a time scale for the velocity fluctuations, u′/δρ, to a

buoyancy time scale,
√
g′/δρ. The data for each case suggest an asymptotic value of

roughly one third for Frms. Using δρ as a length scale for the r.m.s. fluctuations however,
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Figure 16. RMS Froude number vs x. Axes on right also show scale for the normalized
turbulence scale and the turbulent Richardson number. Symbols are as given in figure 3.

is somewhat arbitrary since this implies that u′rms represents scales of the order of the
mixed-layer thickness. While this may apply in the initial high-entrainment region,
one might expect that buoyancy will limit these motions within a ‘collapsing’ shear
layer.

It has been observed by various authors (e.g. Hopfinger 1987; Thorpe 1982)
that motions in decaying stratified turbulence are such that u′/NL = 0.3, where

N =
√
g(dρ/dz)/ρ is the buoyancy frequency and L is an integral scale for the

fluctuations. If we assume that this scaling applies, we find

L

δρ
=

1

0.3

u′rms√
g′δρ

=
1

0.3
Frms (5.1)

using N =
√
g′/δρ. This ratio is also given in figure 16, using the first scale on the

right. This scaling yields a turbulent length scale that is indeed comparable with the
mixed-layer thickness in the downstream high Richardson number region.

We can additionally interpret this inferred scaling for the integral turbulent length
scale as a Richardson number for the fluctuations:

Rit =
g′L
u′2rms

=
1

0.3

1

Frms
. (5.2)

This quantity is given by the rightmost scale in figure 16. The asymptotic value for
this turbulent Richardson number is approximately 10 for all cases.

We can get some idea of the relative contributions to urms from the energy spectra
of the velocity fluctuations. Figure 17 shows representative frequency spectra of
vertical and horizontal velocity fluctuations at x = 52 cm for α = 11.8◦. The plots are
obtained by averaging spectra of velocity time series for all vertical positions at this
x-location. Since frequencies at separate vertical positions represent different scales
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Figure 17. Spectrum for horizontal (solid line) and vertical (dashed line) velocity fluctuations at
x = 52 cm for α = 11.8◦.

because of varying local convective velocities, frequencies in figure 17 are not all
directly convertible to wavenumbers. Larger scales, which, as we have shown in § 4.2,
extend across the flow and convect with the mean velocity, will be well represented
in the frequency spectra. Smaller scales appear as lower frequencies in the slower
regions of the flow and as higher frequencies in the faster regions. Analysis of spectra
corrected for local mean velocities shows no discernable change in spectral shape or
slope for the higher frequencies, however.

Using the convective velocity of ∆U/2 observed for the large scales (§ 4.2) we
can obtain various frequencies from the relevant length scales in the flow. The first
important point to note is that the frequency of the large-scale structures coincides
with the buoyancy frequency, N. We will address the significance of this observation
in § 7. The spectra also contain a distinct peak at this frequency. Spectral levels at
frequencies corresponding to the mixed-layer thickness, δρ, and the inferred integral
length scale, L, advected by the mean shear, suggest that the major contributions to
urms are from the larger, buoyancy-affected scales. Slopes of −7/3 and −2 are shown
for comparison along with the typical turbulent spectral slope of −5/3. The slope of
the energy at frequencies above N is best described by the −7/3 line.

The effect of buoyancy is seen in the vertical velocity fluctuations at the larger scales
where the energy is an order of magnitude less than that of the horizontal fluctuations.
In addition, the energy at the smallest scales also shows a divergence. Despite the
fact that at these scales the limits of the PIV averaging becomes significant, there
is a distinct separation in the energy of the fluctuations of the smaller scales. This
may be attributed to the intermittency of entraining vertical fluctuations which will
be discussed further in § 7.
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6. Entrainment
Given velocity and density field data, we can obtain estimates of the entrainment

rates of fluid into the mixed layer from the high- and low-momentum streams.
Following Ellison & Turner (1959) we define the entrainment rate, E, as

E =
1

V

dQ

dx
, (6.1)

where Q is the flow rate within the layer of interest and V is a representative velocity
for the layer.

The choice of boundary definition for the individual layers is important in minimiz-
ing error and will be crucial in comparisons of entrainment rates from various data
sets. We will use the density thickness, δρ, defined in § 3 as the slope of the best-fit
line through the normalized density (ρ̄) profile between the 15% and 85% values. The
vertical position where this line intersects the ρ̄ = 0 and ρ̄ = 1 values will represent
the mixed-layer boundaries. The normalized total volume flux (per unit width) within
the mixed layer can then be obtained as

Q =
1

H
√
g′H

∫ yL

yH

v(y) dy, (6.2)

as well as the individual mass fluxes of high- and low-momentum stream fluid:

QH =
1

H
√
g′H

∫ yL

yH

ρ̄(y)v(y) dy,

QL =
1

H
√
g′H

∫ yL

yH

(1− ρ̄(y))v(y) dy,

 (6.3)

where yH and yL are the high- and low-momentum stream boundaries for the mixed
layer, respectively. These quantities are plotted in figure 18. The upper plots, (a)
and (b), reflect the fact that the lower-density, upper-layer fluid is generally slower
moving and thus has a lower volume flux. The three plots show the general increase
in volume flux as acceleration or, equivalently, slope angle, increases. Also apparent
in the data is the sharp change in volume flux slope between 20 and 30 cm as the
effects of buoyancy are felt within the mixing layer.

Entrainment rates of either fluid into the mixing layer can be obtained using (6.1)
given slopes from the data in figure 18. As is evident in the data, however, a direct
calculation of the gradient would be difficult to interpret. A primary source of error
in these estimates for the mass flux gradient results from the slow variation of the
origin of the instabilities. The initial point of finite-amplitude development in each
experiment varied within ±10 cm over the course of several minutes. This introduces
a positioning error into the data, which is always referenced to the sill crest. Since
the data are taken in windows of several minutes, an image such as that shown in
figure 9 represents composite sets of data which may be slightly shifted relative to each
other. These errors are compounded in the entrainment rates which rely on gradient
estimates. To minimize this difficulty, estimates of slope for the data in figure 18 were
obtained using only neighbouring data points corresponding to velocity and density
measurements taken concurrently.

From the perspective of a developing downslope current, the primary entrainment
rate of interest is that of low-momentum fluid into the flowing fluid (figure 18a) so
we will focus our attention on that quantity. Downward entrainment rates versus x
are given in figure 19, obtained using equation (6.1) with V given by an integral-layer
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Figure 18. Mixing layer normalized mass flux rates vs. x: (a) upper-layer fluid, (b) lower-layer
fluid, (c) total mass flux. Symbols are as given in figure 3.
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Figure 19. Downward entrainment rate of lower-layer fluid vs. x.
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Figure 20. Entrainment vs. slope angle, α. Also shown are values from experiments by Ellison &
Turner (1959) (•) along with their mean curve.

velocity, Vq , defined, following Ellison & Turner (1959), as

Vq =

∫
v2 dy

/∫
v dy. (6.4)

The flux gradient, dQ/dx, is obtained from the data in figure 18(a) as described above.
The sharp decrease between the two regions defined in § 4 is again apparent with

E asymptoting downstream. Figure 20 show values of E for x > 30 cm plotted versus
slope angle, α, along with data from the experiments by Ellison & Turner included
for comparison. Also shown is their curve reflecting the mean of their measurements.
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The data from the present experiments show considerable scatter but are generally
higher than the Ellison & Turner measurements. The observed scatter in the data is a
result of the positioning error discussed earlier, coupled with the intermittency of the
entrainment process which we will discuss in the following section. Somewhat higher
entrainment rates might be expected in the developing stages of the downslope flow
due to the additional source of energy from the accelerating layer.

Although the flow is approaching a constant Richardson number, as evident in
figure 6 and as is predicted by Ellison & Turner’s theory, a core of dense, homogeneous
fluid remains (figure 9) in the flowing layer. The flow has thus yet to attain a constant
velocity as predicted by the theory. The acceleration of the dense core provides an
additional energy source for the interfacial instability enhancing entrainment. The
distance over which this dense core is entrained is estimated in § 7.4.

7. Discussion
The picture that arises of the developing shear layer in the high Richardson number

region is that of a quasi-stable sheared density interface, with large-scale overturns
restricted by buoyancy evident, while small-scale fluctuations persist, energized by
the accelerating density current. It was observed in § 4.2 that the large-scale structure
is essentially advected with the mean shear and furthermore that the frequency
of the structures coincides with the buoyancy frequency (figure 17). Both of these
observations can be accounted for by the description of the large-scale structure as
a manifestation of a shear instability of the quasi-stable density interface. In fact, a
simple argument using predictions from linear stability theory can show that the most
unstable frequency of a quasi-stable interface occurs at N.

7.1. The quasi-stable sheared interface

Temporal linear stability analysis of a sheared density interface with equal density
and velocity scales predicts a most unstable wavenumber occurring at kδ ≈ 1 (Hazel
1972), with a wavelength of λ = 2π/k = 2πδ. Pawlak & Armi (1998) found that this
scaling extends well to the spatially developing case. Spatial analysis of the shear
profile with a sharp density interface gave a value of kδ ≈ 1.2. Further analysis
(Pawlak 1997) has shown that the value approaches kδ ≈ 1 as the ratio of velocity
to density layer thicknesses nears one and that the scaling is robust to the presence
of a nearby boundary. This instability (Kelvin–Helmholtz) has an advective velocity
essentially equal to the mean shear so that the frequency of the instability for the
given wavenumber scaling is

fδ =
2π

λ

(
∆U

2

)
=

∆U

2δ
. (7.1)

Now, with the observation that the downslope current rapidly reaches a steady, quasi-
stable state with a constant bulk Richardson number, and assuming a value of 1/4
for the critical Richardson number (equation (3.2)) we can substitute ∆U = 2

√
g′δ in

(7.1) to obtain

fδ =

√
g′

δ
= N. (7.2)

This argument essentially notes that a shear layer becomes stable at the point where
its most unstable frequency is lower than its associated buoyancy frequency. We
argue then, that for the marginally unstable downslope current, the structures seen
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in figures 11 and 12 and which result in the spectral peaks in figures 10 and 17, are
manifestations of this shear instability at frequency, N. More significantly, perhaps,
figure 12 shows evidence that the smaller, entraining scales are strongly correlated
with this large-scale structure. This is consistent with the typical structure of shear
instability, with higher gradients being concentrated in the high strain field of the
nodal region between the cores of the cat’s-eye structures (Corcos & Sherman 1984).

An alternative explanation for the observed structure is that it is a remnant of
the initial instability. The evolution of the spectra in figure 10 might support this
perspective since the frequency of the large scale appears near the second subharmonic
of the initial instability. The structures would therefore result from a type of pairing
of vortices generated by the initial pairing (figure 8). While this view cannot be
discounted with the present data set, the coincidence of the measured large-scale
frequency with the buoyancy frequency indicates that the large-scale structure has
more significance. We have shown above how the frequency of the most unstable
wavenumber in the near-stable shear layer is equal to the buoyancy frequency. The
coincidence of the second subharmonic of the initial instability with N may accentuate
its appearance. The comparable entrainment rates in the present set of experiments
versus those measured by Ellison & Turner also suggest that entrainment mechanisms
are related. This further supports the notion that the mechanism of small-scale mixing
modulated by a large-scale instability is responsible for entrainment in a developed
downslope current.

Further interesting features in the visualization in figure 12(a) are the apparent
double-layer structures in the vorticity field. A speculative interpretation is that these
may be associated with the cat’s-eye structure of a shear instability, in particular since
they appear to be correlated with the crests of the structure visible in the intensity
sequence.

7.2. Buoyancy-limited versus entraining scales

One fundamental issue in the study of stratified turbulent flow involves the link
between the buoyancy-dominated large scales, which represent the primary contri-
bution to urms and the smaller-scale fluctuations associated with entraining motions.
A useful comparison of the two scales is given by the ratio of entrainment velocity,
ve = EVq = dQ/dx, to urms, plotted versus x in figure 21. The entrainment velocity
is representative of the entraining motions and the ratio then illustrates the disparity
between the scales of the motions. In the initial, rapid growth region, ve is a significant
fraction of urms. Farther downstream, the ratio drops significantly as the gap between
the scales increases.

The variation of this ratio as a function of a Richardson number based on the large
scales of the turbulence has been examined by a number of authors in a variety of flow
configurations. Turner (1968) documented entrainment across a density interface due
to grid-generated turbulence and observed a dependence of Ri−1 for large Richardson
numbers and a dependence of Ri−3/2 at moderate Ri. Experiments by Baines (1975),
however, in which mixing was generated at an interface by a impinging jets and
plumes showed a Ri−3/2 relation. A range of experiments reviewed by Fernando
(1991) show similar variations, yet the existence of these dependences on large-scale
flow parameters highlights the link between the large and small scales. In any case, the
variations in these relations between different flow configurations indicates distinct
mechanisms for transfer of energy between the scales. Cotel & Breidenthal (1997)
have suggested a model based on vortex persistence (advective time scale versus
rotational time scale for the large scales) to account for the varied dependence
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Figure 21. Entrainment velocity normalized by the maximum r.m.s. velocity fluctuations.

on Richardson number, Schmidt number and Reynolds number. Using dimensional
arguments outlined in Appendix A, we suggest that a relation of

u′e
u′rms

= Ri
n+1
2n+6 (7.3)

might be expected for downslope currents for sufficiently high Richardson and
Reynolds numbers. In equation (7.3), n is the energy spectrum slope for the ve-
locity fluctuations. This argument is consistent with the vortex persistence model and
existing experimental data for a spectral slope of −7/3. The data in figure 17 are
slightly steeper than −2 and could certainly be described by a slope of −7/3. The
present data set is, unfortunately, ill-suited to verify this relationship, due to the small
range of turbulent Richardson numbers attainable. This is partially a result of exper-
imental limitations as well as inherent limits in Richardson number for downslope
flows.

7.3. Mixing intermittency

A further complication in measurement of entrainment for the quasi-stable interface
results from the inherent intermittency of entraining events. We have shown that
the primary mechanism for instability is a large-scale shear instability which sets the
stage for the growth of secondary turbulent structures at smaller scales. These appear
to develop primarily in the high-strain nodal region of the larger scales. Vigorous
entraining events then occur with a frequency equal to that of the large scales. Our
measurements are limited to temporal sequences of about 90 s due to experimental
constraints, which allow for the passage of only 7 or 8 large-scale events. This
limitation accounts for much of the scatter in the measurements of interface thickness
as well as in the entrainment estimates based on the gradients of the thickness.

The intermittency of the occurrence of mixing events also complicates the spectral
argument discussed above and outlined in Appendix A. The implicit assumption in the
use of a spectral decomposition is that there is a physical range of scales represented
by the spectrum. The downslope current shows evidence, however, of a mechanism
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S δx g′ H E1 E2 ∆x1 ∆x2

0.068 0.1 1.75 10.7 0.07 0.025 26.8 157
0.125 0.1 1.75 10.7 0.16 0.020 26.8 86
0.188 0.1 1.75 10.7 0.10 0.035 26.8 57
0.250 0.1 1.75 10.7 0.10 0.040 26.8 43

Table 1. Flow parameters and estimated lengths for high and low entrainment regions.

for a discrete jump from large-scale to smaller entraining scales. For sufficiently high
Reynolds numbers, the spectral slope is a measure of the rate of energy transfer
between the scales, so the argument may remain relevant.

7.4. Estimation of relaxation distance

It is apparent in figure 6 that the flows considered are approaching a steady Richard-
son number as required by Ellison & Turner’s theory. Unlike a fully developed
downslope flow, however, the constant Richardson number is maintained by an in-
creasing velocity, decreasing interface width and a constant density step. A secondary
transition will be realized as the current entrains the remaining homogeneous fluid
in the flowing layer. At this point, a steady Richardson number will be maintained
by a balance between increasing δ and decreasing density step as observed by Ellison
& Turner. With known rates of entrainment of dense fluid into the mixing layer, an
estimate of the distance over which this transition will occur can be made. Ignoring
the effects of the bottom boundary layer, this distance can serve as an estimate for
the length over which the hydraulic flow relaxes to a downslope current. From the
definition of entrainment given in equation (6.1),

∆x =
∆Q

EV
. (7.4)

It was argued in § 4.1 that the length of the initial low Richardson number region,
∆x1, can be given by equation (4.3). Using this length in equation (7.4), along with the
velocity scale, V0 ∼ √g′H , we find the portion of fluid entrained in the initial region
to be

∆Q1

Qi
=

E1

4δx
, (7.5)

where Qi = H
√
g′H is the initial flow in the dense layer and E1 is the upward

entrainment in the initial region.
In the same manner, we can estimate the length of the high Richardson number

region, ∆x2, before a fully developed downslope current is established. The velocity
scaling is now somewhat complicated by the acceleration of the hydraulic flow. Using
hydraulic theory for two-layer flow with an arrested upper layer (cf. Armi 1986;
Pawlak & Armi 1997), we find

1

V

∂V

∂x
= − S/Y

1− F2
, (7.6)

in which Y is the thickness of the flowing layer, F2 = V 2/g′Y is the layer Froude
number and S = tan α is the bottom slope (see figure 2b). As the flow accelerates, the
layer Froude number increases rapidly, so we can make use of the fact that F2 � 1
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to expand equation (7.6) for small 1/F2. With this approximation, (7.6) becomes
(ignoring higher-order terms)

∆V

∆x
=
g′S
V0

(7.7)

and the velocity scale for the high Richardson number region is then given by

V = V0 +
g′S
V0

∆x. (7.8)

This is equivalent to assuming that the increase in kinetic energy is equal to the
decrease in potential energy over a distance, ∆x, ignoring friction and limitations due
to continuity.

Using (7.8) in (7.4),

∆Q2

Qi
=
E2(V0 + (g′S/V0)∆x)∆x

H
√
g′H

(7.9)

with E2 being the upward entrainment in the high Richardson number region. The
entire flowing layer is entrained when Qi = ∆Q1 + ∆Q2, therefore (7.9) yields

E2

H

(
1 +

S

H
∆x

)
∆x = 1− E1

4δx
. (7.10)

Solving for ∆x,

∆x = − H
2S

+
1

2

(
H2

S2
− 4H2(δx − 1

4
E1)

E2δxS

)1/2

. (7.11)

Estimated values for ∆x1, obtained from equation (4.3), and ∆x2, from equation (7.11),
are given in table 1. The calculated values for the total distance ∆x1+∆x2 are somewhat
longer than the length of the test section (∼1 m) for the lower-slope cases while the
higher-slope cases indicate that the developed flow, as we have defined it, is achieved
within our observations. An alternative and perhaps more appropriate definition for
the transition point is the location at which the shear and bottom boundary layers
meet. At this point hydraulic acceleration ceases and the flow attains a constant
velocity as observed by Ellison & Turner. Their estimate of ∆x ∼ 10h0 is certainly
met for the initial region of low Richardson number development. The approach to
a steady velocity can be observed in the decreased slopes for the velocity data versus
the theoretical curves in figure 3.

8. Summary and conclusions
This set of experiments has examined the transition from a hydraulically controlled

wedge flow to a downslope current controlled by interfacial stress. Two distinct flow
regions have been identified in the establishment of the downslope flow. The initial
low Richardson number region is characterized by rapid growth of the mixing layer
along with high entrainment. The vortex separation mechanism described in Pawlak
& Armi (1998) is prevalent in the early stages, although the flow rapidly reaches a
critical Richardson number which arrests the growth of the shear layer.

The low Richardson number region is limited to an extent of O(H) and the flow
approaches a quasi-stable state near the critical value of Ri = 1/4. The flow in the
high Richardson number region shows evidence of persistent turbulent mechanisms.
Spectral analysis and observations of temporal sequences have revealed large-scale
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structures which are convected with the mean velocity and whose frequencies coincide
with the buoyancy frequency, N. Using considerations from linear stability, it has been
shown that this is the frequency of instability of the marginally unstable shear layer
and on that basis the structure is described as a large-scale shear instability. We have
also shown evidence that small entraining scales are correlated with the large-scale
structure, occurring predominantly in the high strain nodal region.

Estimates of entrainment obtained for four experimental cases compare well with
observations for developed downslope flows. This suggests that the observed entrain-
ment mechanisms persist in the developed flow. The extent of both regions of the
developing flow has been estimated as a function of bottom slope.

The Reynolds numbers in the developing region of the flows considered ranged
from 2500 to 5300 based on the vorticity thickness. At these values we would expect
considerable three-dimensional structure at the small scales. Since the observations
are recorded within a small central slice of the channel we cannot consider these,
except to note that the image sequences show clear evidence of small-scale out-of-
plane motions. The large-scale structure remains two-dimensional, though, due to the
primary vertical shear flow.

The effects of a turbulent bottom boundary layer have not been considered. In the
cases studied here, the bottom boundary layer does not extend significantly into the
stratified mixing layer. This factor will surely be of importance in downslope currents
in real geophysical settings, particularly in cases where bottom-generated turbulence
has an effect on interfacial mixing. Nonetheless, in situations where an inertial core of
accelerating fluid persists, the phenomena discussed here will be relevant. This type
of adjustment will also be important in zones where developed downslope currents
are accelerated due to lateral constrictions and variations in bottom slope.

The experiments presented here were completed at Scripps Institution of Oceanog-
raphy. Funding was provided by the Office of Naval Research and the National Sci-
ence Foundation. We would like to express our gratitude to Juan Lasheras and Ken
Melville for loans of various pieces of equipment and to Jochen Klinke for his technical
assistance with imaging issues. We are grateful to our reviewers for careful and con-
structive comments on an earlier version of the paper. Special thanks are due to Parker
MacCready, Eric D’Asaro and Robert Briedenthal for helpful insights and discussion.

Appendix. Spectral interpretation of entrainment slopes
Some insight into the link between large and small scales in an entraining stratified

flow, as well as into the observed variation in entrainment versus Richardson number
slope values can be gained by considering the scales in terms of spectral theory. For
sufficiently high Reynolds numbers, velocity fluctuations at a given wavenumber, k,
scale with the spectral energy, Φ(k), as u′ ∼ (kΦ(k))1/2 (Tennekes & Lumley 1972).
We begin with the assumption that there is a range in the energy spectrum that
can be scaled as Φ(k) ∼ kn. For homogeneous turbulence, for example, an inertial
subrange will have n = −5/3, again for sufficiently high Reynolds numbers. With this
assumption, the velocity scaling, in terms of an associated length scale, l′ = k−1, is

u′ ∼ l′−(n+1)/2. (A 1)

First let us consider the case of entrainment across a sharp interface. If we define a
Richardson number for the fluctuations, Ril′ = g′l′/u′2, and postulate that entrainment
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will only occur for Ril′ < 1 then we can write the critical entrainment velocity as

u′e = (g′l′e)
1/2. (A 2)

If we assume, now, that the Richardson number of the flow is high enough that the
entraining scales are significantly smaller than the large scales of the flow, from the
scaling in (A 1), we can write

u′e
u′
∼
(
l′e
l′

)−(n+1)/2

(A 3)

and similarly (A 2) can be written

u′e
u′

=
(g′l′)1/2

u′

(
l′e
l′

)1/2

. (A 4)

Using (A 3) in (A 4) we obtain

u′e
u′

=

(
g′l′)
u′2

)2(
u′e
u′

)−1/(n+1)

. (A 5)

Applying this relation for u′ = u′rms and defining a Richardson number for the
turbulence using u′rms and its associated length scale (as in (5.2)) yields the following
scaling:

u′e
u′

= Ri
n+1
2n+4 . (A 6)

This relation gives the dependence of the entrainment velocity on the bulk properties
of the turbulence given a spectral shape along with the limiting effect of buoyancy
on the entrainment.

For flows involving entrainment across an interface where the source of mixing is
a homogenous turbulent flow, the spectral slope of n = −5/3 results in an exponent
of −1 for the relation in (A 6). The vortex persistence model described by Cotel &
Breidenthal (1997) predicts a relation of Ri−1 for this case with a multiplicative factor
of Sc−1/2 to account for diffusive effects. The variation of structure and entrainment
for turbulent density interfaces due to diffusive effects was considered by Crapper &
Linden (1974).

If we consider flows with diffuse interfaces, in which the entraining eddies are
smaller than the interface thickness, then the critical entrainment velocity would be
written instead as

u′e = Nl′e. (A 7)

Using (A 1) and (A 7), we find

u′e
u′

= Ri
n+1
2n+6 . (A 8)

For a spectral slope of −2, this would suggest a dependence of Ri−1/2. Vortex
persistence predicts a Ri−1 relation for diffuse interfaces at high Richardson and
Reynolds numbers. A slope of −7/3 would be necessary to match this prediction
using equation (A 8).

As the Richardson number diminishes, the gap between the large scales and the
entraining scales decreases and the scaling argument we have used becomes more
suspect.
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